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Abétract 

The problem of critical scales for phytoplankton patchles
is discussed taking into account the combined advection
diffusion effect on the patch. Dependent on the spatial

structur of the advection the critical length can vary

rapidly with time.
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Introduction

According to KIERSTAED and SLOBODKIN (XS-model, 1353) a
phytopiankton patch disperses, if its spatial scale L is
emaller than a critical scale L, otherwise, L > I, the
patch incregces in size with time. The critical length Lc
is cdefined by

X

~ /A
(1) L= \7)

Here A 1is the constant horizontal diffusivity, and v
is the rate of growth of plankton, respectivelye. It was
nentioned by several authors (sce e.g. OKUBO, 1978; hecre
the reader may find an extengive list of references) that
the KS-model is extremly simplified and some refining of
both physical and biological aspects are necessarye. From
the physical point of view there are the following criti-
cal points: P ' '
1+ The constant diffusivity is a very rcugh approxina-
tion '
2. The boundary condition that the patch is surround-
ed by unsuitable water is rather arbitrary

3+ The interpretation of L. involves ‘gbroblem. Since
any patch of size L« L. will be -destroyed, the
question arises how a pa%ch ever can reach a: scale

L>L,

The present paper deals with the critical length problem
on the base of an advection-diffusion model. The biologi-~
cal aaspects are the same as in the KS-model.
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The Lodel

We study the evolution of a plankton diatribution P(u,t)
from a certain initial patch P(,0) = PO(LF). The depth
H of the upper mixed layer may coincides with the depth of

the enphotic zone. In the frame of thc model P(W,t) 1is a
solution of the diffusion equation

@ [§i+ BV-AD-AD, - ) Plcs)=0
with an initial condition

Por,0y= P
and boundary conditions

9_;_P_O at Z=( (sea surface) end z-=H
0z

A and Az are local horizontal and vertical diffusivitiese
49 is the advection field

A
_ A Uo + Uy X+ UyY wizl
(3) w=/1{;'(x,y)+45‘(z)= +
. Vo t+ V) % +\/77 Vi)

with

diV/Eﬁ = (7
The linear horizontal advection %) (x,y) is considered to

be a mesoscale feature of a large scale circulation patterne

Introducing the streamfunction ‘P: uy, 4’: -V, we have

X X

with uy =g, v.= =f, u_ = -vy =h

!"I ,(‘ < PP A
(4) Y= )—j +3 % —hxy 'f([(c+a)7j’(\4LV)x

Ey means of . § = h2 -fg the sircanline pattern may be
classifieds. For 524 0 it follows an eddy structure and for.
§> 0 we find a deformation field. Both examples are
resoscale features of long wave phernomenonse For large times
ﬁ%t » 1 ({}7= W€A§44; inverse vertical mixing time) the
patch is versically mixed and the solution can be found by
means of a perturbation theory (FENNEL 1980a)e. Perforning a
Fouriertransformation

PUs st ) = Cdxdy &Y Pryy,

we have
—a by el —idl -iex +vE
(5) P(t(,,‘,(lt)% Po(k,x)e <

with

2 {205 3 A
(6) awt)=2At+ %’B—ch(lﬁtﬂﬁ—%[&q(g—p—s@ ;{;‘L )+ Euﬂwﬂt

_ WL+ AL el [ h2Ee_ ECvilt
(Dbttl=2At + AU [ch1G) 1]+ 2 an=fy M( e _1)+ 7o

A )+ Aher, oy [ch2iEE A
@) cl=2(g-f) gy - 1)+ e (m)(*% -1) +I§7E&w. Gl

a, b and ¢ correspond to the dispersion of patches initially
concentrated on a point (Po(Lr7 = Skx)é;(y), Po(k.&ﬁ) =1
d and e describe the movement of the patch along the stream-
lines. :

(9) dit)y= gﬁ.s[,, Tt + %9 - u,l o H
— + Ugh
¥ ﬂr(ob\@%%)*-%‘&dza(zl
o
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The functionals F,, Fy and Fx are given by (see FENNEL
1980b)

(11) Fx[d(af]r ‘3.“ g[gmz)dz = Mlt‘)dszZ
(12) FEO(z»]— —'- S ( vizvdz'-% &dz \/(?_‘)AL]J%
[o]
H

H f H
A A gy A . iy — 203 a0d 2
’(13)nyfu,0 =g S gumdz—%go‘m’)di)( odz‘"“ H&"‘”‘”)

The distribution P(k,&&,t) given by (5) in connection with
(6) to (13) looks rather complicatede But the egsential

point is the following: The dispersion a, b and ¢ can vary
nore or less rapidly with timee That time dependence is con=-
troled by the spatial structur of the advection (¢9=h2 - gf)e
In the case of an eddy structure (§<4 0) a, b, ¢ are pro=
portional to t (t ) Iﬂ?l'4) but in the case of a deformation
field (&> 0) these quantities vary with 612ﬁ?£ for large
times (t ) 5ﬂi e
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The critical length

Based on (5) we diccusc the time dependent wave number
spectrun  P(k,¥,t)e For

k% pxl+ckx >vi

P(k,¥%,t) decreases with time, while for

ukz+ byt+r cex ¢ v

the patch increasese Critical scaleg are determined by
(14) akl+ baetve cledt = vi

By rotation of the coordinate system (k,1 ) 1nto the
principle axes systen (x* , k.) it follows

- *

(1s) k &
vi vi
a* b*

where the principle axes are
———
ar = %[a#o «r\/(a—no)"“fcl 1

% " ey
L™ = %la+b ‘Y(a-bf+cll
Due to the anisotropic nature of the advection there a two

critical wiavenumbers, given by the minor and the major
principle axise

(16)  k,= &= \J_v_ x:zi:\)"—?-
L. 1ot L S
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The interpretation of k1 and P is the followirg:

The small wavenumber part of the spectrun P(k, y2,t)

that means k & k1,)£.. k, will increasc with timee The
large wavenumber part, that means k ) k2,2£'> k., will de~
crease with timee

For wavenumers k1 < k & 1’2 and k1 Va4 lf it nust
be proved by mechs of (14) whether the corvespondlng spec~
tral part increaseg or decreagl3eses

The combined effect of advection and diffusion on the patch
smoothes high wavenumber gtructures. Obvionsly this inter-
pretation of critical wavenumbera is more general than that
of the KS-thecory. Especially the evolution of gnmall scale
patches to large scale patchinesg is not excluded. The
egsential point is that we deal with a continous wavenumber
spectrume If we introduce box-like boundary conditions (eege
P(x,y) = 0 for x =03 L, and y = 0; Lx) we would
find a discrete spectrun and then the interpretation of
critical wavenumbers is the same as in the KS-model. But
neasurenents of spatial phytoplankton spectra show clearly,

i

that real spectra are continously (see eege DENIIANN, PLATT

1975).

Dependent on the spatial structure of our adqecticn field

(3) the critical wavenumbers can vary rapidly with time

Especially in the case of a deformation field (&> 0) k

: -~ 1
tends to zero. Ik, ~ft & st

, while in case of an eddy ’

field (&< 0) k1 and k, converges into constant values. .

In the former case the ex1stence of stable patchinegs seens
to be rather improbable, while in the lather case a gtable
plankton patch can be expectéd.
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